8 research outputs found

    Variability Measures of Positive Random Variables

    Get PDF
    During the stationary part of neuronal spiking response, the stimulus can be encoded in the firing rate, but also in the statistical structure of the interspike intervals. We propose and discuss two information-based measures of statistical dispersion of the interspike interval distribution, the entropy-based dispersion and Fisher information-based dispersion. The measures are compared with the frequently used concept of standard deviation. It is shown, that standard deviation is not well suited to quantify some aspects of dispersion that are often expected intuitively, such as the degree of randomness. The proposed dispersion measures are not entirely independent, although each describes the interspike intervals from a different point of view. The new methods are applied to common models of neuronal firing and to both simulated and experimental data

    Optimal odor intensity in olfactory neuronal models

    No full text

    Optimal odor intensity in olfactory neuronal models

    No full text

    Nonparametric Estimation of Information-Based Measures of Statistical Dispersion

    No full text
    We address the problem of non-parametric estimation of the recently proposed measures of statistical dispersion of positive continuous random variables. The measures are based on the concepts of differential entropy and Fisher information and describe the “spread” or “variability” of the random variable from a different point of view than the ubiquitously used concept of standard deviation. The maximum penalized likelihood estimation of the probability density function proposed by Good and Gaskins is applied and a complete methodology of how to estimate the dispersion measures with a single algorithm is presented. We illustrate the approach on three standard statistical models describing neuronal activity
    corecore